国产无限资源在线观看-国产五区-国产五月-国产五月天在线-性做久久久久久久久老女人-性做久久久久久久免费看

020-8288 0288

高光譜成像儀高光譜數據建模方法介紹

發(fā)布時間:2024-10-25
瀏覽次數:189

高光譜成像儀?在對樣本進行高光數據采集后,會根據測試需求進行采集感興趣的區(qū)域,也就是特征波長的提取,然后跟具特征波長,建立相應的預測模型,進而對樣本的特性進行分析。本文對高光譜成像儀高光譜數據建模方法做了介紹。

高光譜成像儀在對樣本進行高光數據采集后,會根據測試需求進行采集感興趣的區(qū)域,也就是特征波長的提取,然后跟具特征波長,建立相應的預測模型,進而對樣本的特性進行分析。本文對高光譜成像儀高光譜數據建模方法做了介紹。

高光譜成像儀1025

1.SVM建模方法

SVM屬于有監(jiān)督學習算法,是一種基于統(tǒng)計學理論的新型學習機,具有分類效果好、算法思想簡單、運算速度快等優(yōu)點常用于模式識別、分類以及回歸分析。它的優(yōu)點是能夠讓原本非線性可分的問題轉化為在特征空間中線性可分的問題。當數據集噪聲點過多時,SVM通過引入“松弛變量”和“懲罰系數”解決線性不可分問題,能夠獲得較好的泛化性能減少過擬合。SVM另外一個特點是它可以發(fā)現(xiàn)目標函數的全局最優(yōu)解,避免陷入局部最優(yōu)問題。SVM主要設置的參數為核函數類型、懲罰系數范圍。

2.AdaBoost建模方法

AdaBoost是一種自適應提升方法,在它提供的框架內可以任意選擇方法構建弱分類器,不用事先對特征數據進行篩選因此不容易發(fā)生過擬合。而且它最終得到的強分類器并不需要弱分類器的先驗知識,能夠明顯提高模型的學習精度,有很好的泛化性能。在運行過程中能夠自動根據每個分類器的反饋結果進行相應地調整,能夠顯著提高模型分析數據的效率。AdaBoost主要設置的參數為訓練樣本權值大小、弱分類器數量、弱學習器的權重縮減系數。

3.KNN建模方法

KNN是常見的有監(jiān)督學習的分類算法之一,實現(xiàn)簡單不需要提前對模型進行訓練,分類精度較高。在對樣本進行分類時,首先測量不同樣本特征值之間的距離,未標記樣本的類別由距離其最近的K位“鄰居”決定,如果其中某一類別的“鄰居”數量最多,那么該樣本也屬于同種類別。KNN適合用于大樣本數據的多分類問題,主要設置的參數為K值和權重。

4.CNN建模方法

CNN是神經網絡的一種算法結構,神經網絡是模仿生物神經網絡如人類大腦功能和結構的數學模型,能夠實現(xiàn)和人類似的簡單決定能力與判斷能力。CNN網絡結構主要包括卷積層、池化層和全連接層。利用卷積層根據輸入的樣本數據提取特征,然后使用池化層下采樣降低特征圖維數,減少冗余數據,最后使用全連接層選擇不同的激活函數進行分類或者回歸。

5.PLSR建模方法

PLSR是一種多元回歸建模方法,該算法在建模過程中,結合了多種分析方法的特點,將較多的自變量分解為少量的潛在變量。目前在物質檢測方面被普遍使用,尤其是用于處理頻譜數據,可以明顯消除共線性的現(xiàn)象,并且能可視化模型構建中權值最大的區(qū)域。PLSR主要設置的參數為潛在變量的數量。

6.RF建模方法

RF模型是集成學習中的bagging流派,該模型主要是先從原始樣本集中隨機抽取k個采樣集,每個采樣集之間是相互獨立的。分別對這k個采樣集進行訓練形成對應的k個弱學習器,其選用的基礎學習器是分類回歸樹,將這k個弱學習器模型輸出通過結合策略得到最終的模型輸出。通過將多棵決策樹集成,能有效降低模型的方差。RF的優(yōu)點有很多可以對高維數據和不平衡數據進行處理,處理速度快效果明顯且不容易產生過擬合。RF主要設置的參數為決策樹的數量和最大深度。

聯(lián)系我們

Contact us
廣東賽斯拜克技術有限公司
  • 地址:廣州市增城區(qū)新城大道400號智能制造中心33號樓601
  • 電話:020-8288 0288   13500023589
  • 郵箱:3nh@3nh.com
  • 網址:http://www.hometels.cn
Copyright © 2024 廣東賽斯拜克技術有限公司 版權所有
  • 公司聯(lián)系方式
    QQ
  • 網站首頁
    首頁
  • 公司聯(lián)系電話
    電話
  • 返回
    返回頂部
  • 主站蜘蛛池模板: 日本美女中出| 国产单男| 九九99视频在线观看视频观看| 久久福利青草精品资源站免费| 婷婷视频网| 国产免费的野战视频| 免费h视频在线观看| 欧美午夜寂寞影院安卓列表| 亚洲香蕉国产高清在线播放| 91大神在线观看视频| 男女在线免费视频| 天天噜噜日日噜噜久久综合网| 色综合久久久久久久久五月| 男人的天堂色偷偷| brazzersvideosex欧美最| 日日插夜夜爽| 夜色sese| 在线毛片网| 人人澡人| 777色淫网站女女| 国产美女一级高清免费观看| 99热久久精品免费精品| 四虎黄色影院| 狠狠色综合网| 天天插天天干天天操| 国产yw855.c免费视频| 亚洲国产精品嫩草影院| 久久综合影视| 天天综合天天| 成人理论片| 欧美一区福利| 性夜黄a爽爽免费视频国产| 性xxxxhd高清| 日本黄色片黄色片| 免费人成网站永久| 精品一区二区三区在线视频| 色婷婷精品综合久久狠狠| 国产美女精品在线| 狠狠干干| 亚洲综合狠狠| 亚洲一级特黄|