高光譜成像儀的光譜圖像數據如何處理與分析?
發布時間:2023-05-26
瀏覽次數:749
高光譜成像儀將傳統二維成像技術和光譜技術有機結合在一起,既可以獲取目標物的二維空間信息,又可以獲得一維光譜信息,具有光譜范圍廣和圖譜合一的特點。那么,高光譜成像儀的光譜圖像數據如何處理與分析?本文為大家做了介紹。
高光譜成像儀將傳統二維成像技術和光譜技術有機結合在一起,既可以獲取目標物的二維空間信息,又可以獲得一維光譜信息,具有光譜范圍廣和圖譜合一的特點。那么,高光譜成像儀的光譜圖像數據如何處理與分析?本文為大家做了介紹。
高光譜成像采集的三維數據塊能夠提供被檢樣品內外部豐富的成分含量信息,但由于高光譜數據具有波段多、分辨率高、數據維度高、冗余性強等特點,因此必須采取合適的的數學算法對數據進行處理和分析。通常高光譜圖像處理的流程一般包括:高光譜圖像的獲取、圖像的校正,圖譜信息的提取、數據預處理、數據降維和特征變量提取、模型建立、結果分析等幾個方面。總結以上的幾個方面,可以將其分成三個方面:高光譜圖像校正、光譜數據降維以及檢測模型構建。
高光譜圖像校正和光譜預處理
在高光譜圖像采集過程中,由于圖像是未經校正的原始圖像,在圖像的的采集過程中由于相機中的暗電流的存在會對采集系統產生一定的影響,使得采集的高光譜圖像穩定性較差,另一方面由于原始高光譜圖像數據是光子的強度信息,需要通過反射校正來獲取相對反射率。因此對高光譜進行黑白版校正是數據分析前一個必要的過程。另外,由于在光譜信息采集的過程中存在光散射、檢測物圖像不規則以及隨機噪聲等不利因素,會使光譜曲線出現不平滑,信噪比較低等問題,所以在進行相關數據分析之前都會進行數據的預處理,常用的預處理方法有平滑、歸一化、求導、多元散射校正、傅里葉變換、小波分析等,通過預處理后的數據不僅提高了曲線的平滑性和信噪比,而且對后續所建模型的準確性也有一定的提升。
高光譜數據降維
由于高光譜采集的數據塊通常含有幾百甚至上千個波段的光譜信息,這就造成了過高維度的光譜信息和數據較大的冗余性,不僅使得計算過程繁瑣,而且還會降低無損檢測模型的準確性,因此在建模前對高光譜數據塊進行降維處理是進行數據分析的重要一步。查閱文獻發現,當前應用較多的降維處理方法主要有以下幾種:主成分分析法、獨立成分分析法、遺傳算法以及最小噪聲分離法等[19-22],通過相應的降維算法處理后,大量的冗余信息被去除,并且特征波段和圖像被提取,這些對于簡化計算過程和提高模型的準確性發揮著重要的作用。
檢測模型的構建
通過對降維處理后的圖譜數據進行建模,可將圖譜信息和待測品質關聯起來,目前常用的一些化學計量學建模方法有偏最小二乘法、支持向量機、人工神經網絡、多元線性回歸法,線性判別分析,Fisher判別分析等算法,通常的做法是應用多種建模方法,最后比較不同建模方法建模集和預測集結果來選出最優模型,因此建模方法不是固定的,而是根據不同的數據類型選用不同的建模算法,不匹配的建模方法通常會對結果準確性會產生較大的影響。而對于降維后的圖像維,通常采用相應的數字圖像處理技術對圖像進行分割處理,從處理后的圖像中提取特征參數建立模型,進而對被測樣本表面缺陷或殘留物進行檢測和識別。
相關產品
-
高光譜成像技術精準測試防火材料阻燃隔熱性能
火災頻發,防火材料至關重要 近年來,火災頻發,給人們的生命財產安全帶來了巨大威脅。從居民樓火災到森林大火,每一次火災事故都令人痛心疾首。據相關統計,僅在過去一..
-
高光譜成像技術對鮮蓮直鏈淀粉含量檢測實驗室研究
高光譜成像技術是一種能獲取豐富光譜和圖像信息的無損檢測技術,相較于化學檢測方法,具有省時、省力、環境友好的優點口。本文將采用高光譜成像技術對鮮蓮直鏈淀粉進行實驗..
-
高光譜相機:開啟紙張分選的精準時代
在環保日益受到重視的當下,廢紙回收成為了資源循環利用的關鍵一環。每年,全球產生的廢紙數量驚人,據相關數據顯示,僅我國每年紙張消費就呈約 3500 萬噸,若以廢棄..
-
高光譜成像技術牛奶蛋白含量的實驗室研究
牛奶作為人們日常生活中重要的營養來源,其蛋白質含量是衡量其營養價值的關鍵指標之一。傳統的牛奶蛋白含量檢測方法,如凱氏定氮法、高效液相色譜法等,雖然能夠得到較為準..